skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Penghui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Operational stability is essential for the success of organic electrochemical transistors (OECTs) in bioelectronics. The oxygen reduction reaction (ORR) is a common electrochemical side reaction that can compromise the stability of OECTs, but the relationship between ORR and materials degradation is poorly understood. In this study, the impact of ORR on the stability and degradation mechanisms of thiophene‐based OECTs is investigated. The findings show that an increase in pH during ORR leads to the degradation of the polymer backbone. By using a protective polymer glue layer between the semiconductor channel and the aqueous electrolyte, ORR is effectively suppressed and the stability of the OECTs is significantly improved, resulting in current retention of nearly 90% for ≈2 h cycling in the saturation regime. 
    more » « less